An Ode to Math

I think we need to talk about an important component in the sciences, one that gets a terrible reputation, is often scorned, and legions of people claim hatred of or ineptitude at: it is math. Poor math. But you know what? Math is actually pretty cool and there are so many different aspects of it. There is something for everyone.

Let’s start with this article where it seems that Canadian students are no longer leading the way in math. Alberta, where I live, used to be the country’s leader and is now struggling to perform. This breaks my heart. Math is so critical. I don’t really understand this “discovery based learning” of math. Don’t get me wrong, I am a big fan of making sure that people understand there is more than one way to skin some sort of animal and that there are limits to what rote memorisation can get you. However, there are certain things that do need to be committed to memory because they will form the basics tools for more complex learning later on: notes on a scale — you cannot memorise every possible combination, but you do need to know what is in an octive to play music; words in a language — again, you cannot memorise every sentence you will ever need, but you will need to memorise the various words that make up your vocabulary; the alphabet and the sounds the letter make — imagine trying to learn to read if you can’t remember what sound the letter “t” makes? I equate that memorising multiplication tables is the same. By knowing that 3×9=27 it is much easier to solve 99 x 3. (99×3=297)

I know that math is difficult

Here’s the thing: math is critical to life. Okay, so you may never have to solve the Schrödinger equation for the hydrogen atom, but I bet you will have to figure out a budget. Whether it is a household budget or the billion dollar budget of a province, it is kind of important to make sure that your math is correct.

How about this: my mother is one of the greatest math whizzes I have ever met. Does she use her prodigious skill in putting together new designs for military jets at an engineering firm? Not so much — instead she uses those skills to further a hobby that keeps us all warm: she makes quilts. (She even made me one with a double helix on it in celebration of my PhD.) If you ever want to meet someone who can add quickly in only fractions, talk to a quilter. Each seam has to be 1/4 of an inch. You are making four squares made two 4″ right angle triangles. How much fabric to you need? My mother probably wouldn’t ever consider herself to be on the level of John Nash, but I have watched her add up everything she needs for these patterns in such a quick fashion that even Euclid would have to take notice. I am happen to be a pretty deft hand at math, and I found it hard to follow her calculations, she’s that good.

Just an example of one quilt she made.

Just an example of one quilt she made.

Quilt making is just one example of how you can use math in a very not boring way. Look at how pretty the geometric patterns of a quilt are. Here’s another way you might need to be good with math: baking or cooking. Ever need to double a recipe? Ever need to cut it in half? Ya, that is all math. Delicious math, but still math.

I will admit, despite being good with math, I did find math class a little dull. Probably because it lacks context. But put me in a chemistry class where I need to figure out the quantity of an analyte in a solution through a series of back calculations, I am hooked. It is so neat that knowing this concentration and that volume, this molecular mass and that dilution factor, I can tell you how much calcium was present in a water sample. That math never “feels” like math. It is seems so straightforward and easy; after all, it is just multiplication and division, set up using the same principles that I learned when memorising my multiplication tables in fourth grade.

That’s the thing about math: it is everywhere. It is hiding in your budgets, lurking in your kitchen, sneaking in your job, but it is always there, giving you a helping hand when you need it, making sure that life makes sense. Imagine getting on a plane without math. How safe would you feel if some of those calculations about lift and drag weren’t quite right? Or imagine getting surgery. The calculations that the anesthesiologist uses are very precise-ensuring that you remain unconscious but not dead. (That would be why they are paid A LOT of money.)

Math is your friend. You don’t need to be Stephen Hawking to enjoy the benefits of math. And I bet that most of you, in your own way, are pretty good at math. Let’s change the reputation math has and start giving it the credit it is do. From music to planetary movements, math is pretty cool.


Girls with Toys

I want you all to engage in a little thought experiment with me:

Imagine yourself at dinner with some family friends. Their 17 year old is going to be heading off to university next year and so you ask “Jamie, what is it that you are planning to do?” Jamie replies, “I’m going to be a physicist! But, like, not just any physicist, I want to get a PhD and work for, like, NASA or something. I want to be Canada’s Neil Degrasse Tyson!”

You’re not surprised; this kid has always loved science. Heck, when Jamie turned 7 your gift was a model of the solar system. Which was followed by a lecture on its inaccuracies: Pluto is NOT a planet.

What advice are you thinking about offering Jamie, knowing that these specific career goals mean at least a decade in university?

-How about the fact that this may interfere with plans to have a baby? No one wants to start having kids in their 30s.

-A technical diploma will allow for way more family focused jobs

-What about *future* husband’s career goals?

How many of you actually imagined that Jamie was a boy?

On Friday, Shrinivas Kulkarni of Caltech said in an interview on NPR “many scientists, I think, secretly are what I call ‘boys with toys'” and it has since sparked a backlash on Twitter with the hashtag #GirlswithToys. It has some people wondering, “what are people so outraged”?

Well here’s the reason: that statement automatically excluded 50% of the population from being identified as scientists, a group that already is discourage from science, technology, engineering, and mathematics (STEM) disciplines. In one statement, Dr. Kulkarni managed to highlight the tacit institutional sexism present in the sciences (like so many other fields).

You would be hard pressed to find anyone, with the exception of cretins who identify as “Men’s Rights Activists”, who would openly say “women cannot be scientists” and yet, women earn as few as 20% of the the bachelor of science degrees awarded to men in physics, engineering, and computer science.

On April 29th, (that’s April 29th, 2015) female researchers were told that their paper would be improved if it had a male co-author. I can assure you that none of my male colleagues have ever been told their paper would fair better with a female co-author.

My male colleagues haven’t been asked about “when they are planning to have children” in job interviews, despite being married (some already committed fathers). My male colleagues haven’t had TAs who didn’t want to to female students. (Sadly this was a situation that arose, in 2009, in Canada.) When my male colleagues mention that their PhD is in chemistry, I have yet to see the kind of shocked faces followed by the condescending, “oh you have a real PhD,” as though somehow getting a PhD in a physical science is harder or more legitimate than one in a social science. I have never heard anyone refer to my male colleagues as a “bitch” because the same kind of tough questions that the male professors do. And they certainly haven’t had to deal with the rampant sexual harassment. Let me tell you, when you are at a conference poster session and one of your professors begins to tell, in graphic detail, of how attractive he thinks a well-known undergraduate student is and what he is planning to do alone in his hotel with her image, it makes your skin crawl to know that even if you said something about this, the guy has tenure and so nothing will happen. Hell, let’s not even discuss some of the things the more senior fellows in the department have said.

Did Dr. Kulkarni mean that women can’t be scientists by his off-hand remark? Probably not. I like to think that he was commenting on the child-like curiosity that many scientists have, and that the general enthusiasm with which curiosity-driven research is carried out feels a little like “getting to play with some pretty cool toys”. However, when you take that sentiment in context with the stories of institutional sexism that I, and every female scientist, has experienced in some way, it becomes easy to see why we are reacting with outrage.

I happen to work for a company called Life Science Forensics, where I am the Director of Science and Research, and right now we are made up of four women only. I would very much refer to this wonderful group of women that I work with as “girls with toys” because we are driven to innovative research projects that often start with a curious question and the knowledge that we have plenty of high end instrumentation to test out ideas. We are committed to innovating our field-and if you had the kind of instruments we have, you’d want to be testing for all kinds of things like we do.

Does it matter that we are women? Not at all. Science is for everyone with a curious mind. Dorothy Parker wrote: “The cure for boredom is curiosity. There is no cure for curiosity.” And that has NOTHING to do with gender.

What is a DNA Fingerprint?

Gel featuring DNA bands from three individuals compared to an unknown sample.

Gel featuring DNA bands from three individuals compared to an unknown sample.

Today in Kingston, ON, a man was arrested in connection with a kidnapping and sexual assault that took place in Calgary, AB, 20 years ago. The police were able to connect the suspect to the case by comparing his DNA to samples from the Calgary cold case.

I was asked to talk with the CTV reporter covering the story to explain DNA fingerprinting. RCMP forensics scientists-the real experts who made this type of arrest possible, aren’t available on Sundays. But if you happen to be Director of Science and Technology for a company called Life Science Forensics, and the sister of said reporter, you tend to be more available on Sundays.

One of the big questions from today’s interview was “how does this technology work?” Now, in the interview, my answer was pretty quick, because there wasn’t too much time to really explore the details-the story wasn’t about the science, or at least not ALL about the science. So here is a chance to go into a bit more detail.

The first thing to understand about DNA fingerprinting (the preferred term is actually genetic profiling) is that all of a person’s DNA (called the “whole genome“) is NOT sequenced. Only pieces of the DNA are sequenced. Your DNA contains TERABYTES of data. (The MacBook pro that I am writing this on has only 500 gigabytes of storage-it wouldn’t even hold the information that your DNA holds.) It would take a very long time to sift through the data from a whole genome, especially since 99.9% of our DNA is the same as everyone else. And thanks to evolution, we have a whole lot of junk DNA that we just kept with us as we climbed the evolutionary ladder.

What scientists use instead to build a DNA “fingerprint” are genetic markers called short tandem repeats (STR). These are areas of your DNA that present in every human, but are highly variable (polymorphic), meaning that they differ from person to person. There are typically 13 STR loci that forensic scientists use to create a genetic profile.

Simple overview of steps in DNA profiling.

Simple overview of steps in DNA profiling.


1) DNA sample is collected: could be blood, hair, saliva

2) The DNA is then broken up into smaller pieces, using an enzyme that cleaves DNA at specific locations

3) The DNA markers are amplified by a technique called PCR (Polymerase Chain Reaction). This means that the original DNA sample can be quite small-maybe only 20 DNA containing cells.

4) The DNA pieces are then run through a technique called gel electrophoresis, where a high voltage current is applied to a gel that contains the DNA fragments. The fragments separate out based on size, with the smaller fragments travelling faster. The result is the band-like structure seen in the picture at the top.

The bands on a gel from the unknown sample will be compared to suspects (in the case of criminal DNA testing). If the unknown DNA is a match for a suspect, the bands on the unknown sample will exactly match. Take a look at the samples in the picture at the top. Can you identify which suspect is a match for the sample from the crime scene? (Answer at the bottom.)

Each of these STRs are independent, meaning that a particular sequence of one does not influence the other. In probability terms this means that each of these is an independent event. The result is a one in several trillion chance of two sequences from two individuals being identical. The notable exception being identical twins, who by definition have the same DNA.

Me, talking to CTV.

Me, talking to CTV.

What has changed since 1995?

Well, the techniques are better, we can use smaller samples of DNA. We can even now put together samples from degraded ancient DNA. We can’t quite use those samples to clone a velociraptor (a la Jurassic Park); however, we can use the sample to identify remains of those long dead. Analysis of mitochondrial DNA was how the remains of Richard III were unequivocally identified in 2013.

Better, faster, more sensitive techniques allow for identification that may not have been possible in 1995. Further, PCR was developed in 1991, meaning that 20 years ago, it was still relatively new. Today we are much more comfortable with DNA analysis, as is the legal system.

Check out the story on CTV:

*The unknown DNA sample in the top image is a match for suspect number 2

Dates, Jobs, and Balance in Science

I think it has been pretty clear that I have not been writing as much for Curiosity Science as I would like, even though there is so much to share in the world of science. That has to do with my new adventure: an actual paying job! I am working for Paracel Laboratories as the new business development person for the lab starting in Calgary. What is particularly awesome is that this is also a joint venture with Life Science Forensics. This has given me the opportunity to learn in a new field and also I will be writing for Life Science Forensics blog. It is a great opportunity, but all of this has me spread pretty thin and lacking the inspiration to move forward.

Me and the boy, getting ready for date night.

Me and the boy, getting ready for date night.

Luckily I have a great partner. He’s that handsome one on the right. He knew it was time for us to go out and have a date night. It was a Thursday. Where does he plan to take a scientist who is getting burned out, lacking balance, and getting low in inspiration? He takes her to the Telus Spark Adults Only Night!

Adults Only Night! I am so excited.

Adults Only Night! I am so excited.


This has to be one of the best dates that we had, and we have had some pretty great dates. (And yes, I am wearing molecule earrings. I try to dress on point.) I have always loved going to Telus Spark (or in Edmonton, the Telus World of Science) during regular hours, with all of the kids. My nephew has great fun there, and of course, Auntie will always take him, because, science. But this was BETTER! And not just because they were now selling booze (though, it is a charming perk) but you get to play in all of the exhibits without worry that some kid is going to cut in front of you and grub up what you are looking at. Sure, some rowdy adult might do that, but while people really give you the side-eye if you get annoyed with a six year who is wrecking your wind tunnel experiment with their mindless block stacking, they applaud you for pointing out the line to hold the snake. (I don’t really get mad at 6 year olds; I do point out lines. I like order.)

A fossil on display; a loan from the Royal Tyrrell Museum.

A fossil on display; a loan from the Royal Tyrrell Museum.

This time they had the Dinosaurs in Motion exhibit. Art + Science = Amazing! These are sculptures of dinosaurs that are also like big metal puppets. So you learn about the dinosaurs, you learn about how the sculpture was built, and also how to make them move.

Making a T-Rex move requires some decent force!

Making a T-Rex move requires some decent force!

Ever paid homage to a pulley? The pulley is one of the basic, simple machines, reducing the force required to lift an object. It reminded me of first year physics, where we actually had to calculate the amount of force that pulley would reduce the movement of a load by. Why did none of those problems involve us moving a T-rex? Seriously, it might have actually been an interesting exercise if I had to do that calculation.

Me trying to make this guy move with the playstation controller. It isn't going well.

Me trying to make this guy move with the playstation controller. It isn’t going well.

I can tell you that I was not very good at moving the sculptures attached to playstation controller. Apparently moving passed the simple machine of the pulley was too challenging for me. This exhibit was so neat. I loved the art work. The artist that created these sculptures did a wonderful job. What really struck me with this though was that it was an artistic impression of physics, paleontology, and metallurgy. Science isn’t some esoteric field of study that can only be found in the recesses of dusty books; science is in every part of life, allowing us to create beautiful innovations. Whether it is moving dinosaurs or a new app for our smart phones, science can inspire. And the sheer number of adults queued up behind me just to try their hand at making this guy move, is a testament to just how fun expressions of art and science can be.

After playing with dinosaurs we explored the rest of the exhibits and found that there was a display of reptiles. Now, my partner LOVES snakes! (He may have been the adult that I had to point out the line up to.)

The boy and Steve.

The boy and Steve.

Me and Steve.

Me and Steve.

So that is how we met this guy: his name is Steve and he is a rat snake. And if you can’t tell, the look on my partner’s face is his “quick, stick him your purse and make a run for it” look. Of course, we didn’t. It wouldn’t be right. But we did enjoy snuggling with Steve for a few minutes. Snakes are pretty cool.

This date  was so fun. It was different and amazing. It reminded me of why I love science, why I love talking about science, and why it was important for me to start this project in the first place. I love what I am doing with Paracel and Life Science Forensics. I am just having a little trouble in finding that thing called balance. But luckily for me, Telus Spark had a whole display demonstrating balance in the Dinosaurs in Motion exhibit. Hopefully now I can find some.

Thanks Telus Spark: we had a great date!

Heading home after a great date!

Heading home after a great date!

Chemicals are Your Friends-Well Most of Them Anyway

As a chemist, one of the hardest things that I deal with is the fact that most people HATE chemistry. It seems to be the most hated of all the sciences. And of all of the chemistry classes people take in university, the one they hate the most seems to be organic chemistry. This adds to my heartbreak because that is the type of chemist I am. I love chemistry and I really love organic chemistry. You don’t spend 11 years in university studying something that you only have tepid feelings about. So when the first thing people say to me after they find out I am a chemist is “ugh, I hated chemistry,” I start to feel defensive. “Oh ya, well…I hate your chosen profession…you…accountant.” This is of course made worse by idiots who have no clue what chemistry is and want to scare you with “chemicals” and making them sound like something nefarious that Snidely Whiplash is pouring into your water supply.

Here’s the thing: not all chemicals are bad. Actually most of them are great. In fact, you sitting there, reading this, you are a giant, walking, talking chemical reactor. Your cells use chemical energy to function. Your food is all chemicals. Your body is doing some pretty complex chemistry just to make your heart beat. The chemical bonds in fats, proteins, and sugars are broken down and put back together in important ways that allow you to survive. Chemistry is life.

There are some chemicals that are terrible for you, both man made and natural. Strychnine comes to mind as a chemical that is not so good for you. Botulinum toxin, produced by the bacterium C. botulinum, causes botulism-not a good chemical, unless you’re the bacterium. Man made chemicals are an interesting mix: we make them to solve certain problems, but they might also create a few problems of their own. Here’s a quiz for you: name the chemical that you think has saved the most lives? I am talking of hundreds of millions of lives. What did you guess? Did you guess DDT? That’s right, the pesticide DDT has actually saved the most lives. It is the most effective chemical in killing malaria-carrying mosquitoes. It is also inexpensive compared to alternate pesticides, which is matters greatly, since the vast majority of people impacted by malaria are in the developing world. Now, I am not advocating for the use of DDT. Its environmental impact is severe. But I do think it highlights some of the complexities regarding what makes a chemical “good” or “bad”.

Now when people hear chemical names, they sometimes get scared because they think “well that sounds like a toxic compound I do know, so this must be bad too”. I remember hearing a woman say that the traces of tertiary butylhydroquinone in fryer oil was harmful to human health because “butyl” is like the lighter fluid “butane”. These two compounds are so different, it is kind of like saying Michael and Michelle at your office are practically the same person because their names are so close. I hear variations of this argument a lot. “This chemical is ALMOST the same as a really bad one, therefore it must also be bad.” The thing is, when you look at the periodic table, the different between each type of element (all 118 of them) differ only by one single proton. But that proton makes a huge difference. Just like changing one proton in an atom changes the element, changing one atom in a molecule can drastically change that molecule.

Take a deep breath in, let it out. Are you still alive? Great! That is because what you breathed in was mostly nitrogen gas (and some oxygen of course, but mostly nitrogen.) The nitrogen in our atmosphere is comprised of two atoms of nitrogen bonded together with three bonds (triple bonded). That nitrogen floats around not killing anyone, perfectly happy and inert. Now, let’s change one of those nitrogen atoms to carbon. So instead of two nitrogen atoms triple bonded together we have one carbon atom triple bonded to one nitrogen atom. Take a deep breath of this compound and now you’re dead. See one carbon atom triple bonded to one nitrogen atom is cyanide.

So the moral of this post is that not all chemicals are bad. Don’t believe anyone who says they have something for you that is “chemical-free” because they are lying. If you have questions about chemicals, especially additives and preservatives, send me a message: I would love to answer your chemistry questions, especially if your source is food babe, Gwyneth Paltrow, or Dr. Oz: you deserve someone who actually knows what they are talking about.

I love chemistry!

Dear Pro-Vaxxers: Lay Off Jenny McCarthy

Vaccinations: I am guessing that by clicking on this entry you are expecting either some fear-mongering piece on how vaccinating your kid will make them more sick than the disease and it is all pseudo-science or you are expecting a self-righteous piece on how vaccines are safe and those not vaccinating your kids are guilty of child abuse and you are responsible for the deaths of babies. 

Sorry to disappoint, but this particular blog is my attempt to recognise that people who offer trepidation about vaccination do have some valid questions and they should not be mocked for asking them. I am writing to the pro-vaxxers: we have the science on our side, let’s maybe stop calling people who question it idiots and maybe instead help them understand. By being combative, we are not doing anything to stem the anti-vax movement, and that is something that impacts all of us.

The anti-vax movement can be traced back easily to Andrew Wakefield’s fraudulent studies on a relationship between autism and the MMR vaccine. I don’t really feel like going too much into Andrew Wakefield as I would equate him to the Bernie Madoff of science. There have been no less than 16 000 peer reviewed papers by reputable scientists in everything from epidemiology to chemistry who have since studied vaccines and found that there is no link whatsoever and we should all line up and get the shot. The damage done by this study is upsetting.

So why then are people still buying into the “anti-vax” movement? I would have to say that such a study simply caused people to ask questions that previously they just accepted: what is in these vaccines? Why do I have to get so many? How are they tested? How do we KNOW they are safe? It obviously didn’t help that high profile celebrities like Jenny McCarthy and Jim Carey were often seen at anti-vax rallies and Jenny McCarthy even wrote the introduction to Andrew Wakefield’s book. 

 Ah, Jenny McCarthy-she is really why I am writing this particular entry because recently she has backed off her “anti-vax” stance writing an op-ed piece for the Chicago Sun Times stating “I believe in the importance of a vaccine program and I believe parents have the right to choose one poke per visit. I’ve never told anyone to not vaccinate.” Well you know the internet, this immediately caused a backlash of people calling her a hypocrite, citing every “anti-vax” statement she ever made. There is even a website called Jenny McCarthy Bodycount which shows the number of preventable deaths caused by previously eradicated diseases. 

I am a staunch pro-vaxxer. It is in the interest of public health that we get vaccinated. The situation in Disneyland is great reminder of why it is important that we vaccinate. It is how we will cure diseases and ensure no one ever gets them. Seriously, if you are the kind of person donating money to any sort of disease cure, chances are some of that money is going toward finding vaccines. With all this in mind I was utterly disappointed to see the reaction toward Jenny McCarthy’s change. DEAR PRO-VAXXERS: THIS IS WHAT WE WANT! We want people to realise that vaccines are important to the health and safety of everyone in society. We want people who were previously anti-vax to take comfort in the science of vaccines and recognise their importance and feel comfortable in choosing vaccination for them and their children. People are not likely to do that if they see someone like Jenny McCarthy get completely torn apart for changing their mind. I, for one, think it was a brave move of Jenny McCarthy to write a piece explaining that she now has a more “pro-vax” stance.

 As a matter of fact, there have been studies to show that in the face of all the evidence, people are less likely to change their minds. We are not going to make easier by being jerks when someone decides to change their minds. The Guardian published this article emphasising that being jerks about vaccination is not helping things.

 “Dumbledore says people find it far easier to forgive others for being wrong than being right,” said Hermione.  (Harry Potter and the Half Blood Prince, page 95)

 I really feel that as scientists we need to be more accessible as experts. We need people to start realising that we are the “real doctors” and that there are more resources out there to get the answers than their general practitioner physician. Don’t get me wrong, physicians are great. They are great at what they do but they are not experts. They refer you to oncologists, surgeons, dermatologists, etc., when you need an expert for a medical malady. This works the same for research. Physicians are not experts. They rely on the work of experts and yet they are the ones that have to field the questions. Let’s help physicians out and get the experts out there because an immunologist is much more suited to addressing the question of “why do I have to get my baby vaccinated every 2 months?” than your public health nurse or general physician. Again, let me stress: public health nurses and physicians are great-but they are not the only resource.

 Here is where Curiosity Science can help you. I am here, with a network of science connections to help you find answers to your vaccine questions. No judgement, just science. Send us an email with your questions at Also keep reading our site. There will be plenty of information relating to vaccines and how they work, like some of these previous posts on the immune system or vaccine truth.

 So for all of you, pro or anti-vax, I hope you keep reading my series with an open mind to learning something new. For all of you pro-vaxxers: please be kind when talking about the vaccine debate. I know that it can be frustrating, but remember that much of it started with simple questions, which is something that as scientists, we embrace. We have the science on our side; we don’t need to resort to childish name calling or “anti-vax shaming”. Shaming has never been a winning strategy. We are not trying to win a debate. We are trying to provide information that makes parents feel that they are doing the right thing by vaccinating their children. For all of you anti-vaxxers: please keep an open mind to peer-reviewed science. You should always feel comfortable asking questions about why your child is receiving any kind of treatment, but you should also know where to get answers that are based on fact. Unfortunately the internet is a big place and anyone can post whatever they like. It can be a challenge just to sort out what sources are valid and which ones are not. Vaccination is about more than just you and your child, though: it is about community health.

The Immune System: Your Own Personal Military

 To understand how vaccines and other pharmaceuticals work, we need to understand the immune system. You can think of your immune system like your own personal army protecting you from outside threats. With this in mind, the first term that we should define is pathogen: an agent that causes disease. These can be foreign bacteria, like Streptococcus pneumoniae, which causes pneumonia, or it could be a virus, like the Measles virus. Your immune system is designed to protect you from pathogens. Pathogens carry foreign proteins that are referred to as antigens and these antigens are what trigger your immune army to attack.

Figure 1: White blood cell types.

Figure 1: White blood cell types.

So who is involved in this very important immune army?  The immune cells are called lymphocytes (aka white blood cells) and are made up of T cells and B cells (Figure 1).  There is a difference between T cells and B cells in where they are produced and how they interact with antigens, but for simplicity, I am not going to delve into the differences. Both T cells and B cells work synergistically to create long term immunityI am going to focus my explanation on B cells. 

Figure 2: B cell function.

Figure 2: B cell function.

B cells produce and secrete little Y-shaped proteins that bind to antigens (Figure 2). These Y-shaped proteins are referred to as antibodies and are specific to a particular antigen. These antibodies then roam around your blood system and if they encounter the pathogen they are specific for, they will bind to the antigens on the virus or bacteria pathogen. This marks the pathogen for destruction. Large cells called macrophages will come along and eat the virus or bacteria cells marked with antibodies and destroy them.

Your Body at War: A Summary of Your Immune System

A foreign invader (a virus or bacteria) enters your body and makes you sick. Your immune system sends in its troops, the White Blood Cell corps, to fend off the invaders. The cells create and secrete proteins called antibodies that will mark the invaders. Then large cells called macrophages come along and eat the foreign cells that have been marked by the antibodies. After you’ve defeated the enemy, you keep the antibodies. The antibodies will then continue to patrol your body’s perimeter and if that particular invader tries to come back in, the antibodies will mark it for destruction before it can even cause disease.

How then does vaccination work?

The idea with vaccines is that you trick your immune system into thinking that it has the disease. You provide your immune system with the necessary antigens to create an immune response, but doesn’t provide it with the actual disease causing agent. Therefore you get an immune response but you don’t get sick. Your body will produce antibodies against that particular disease so that when you are exposed to the actual disease, your immune system immediately marks the pathogens and destroys them before they have a chance to make you sick.  

I said above that your immune system usually wins, so why do we even care about this? Well, just because your immune system may win, it doesn’t mean that it does not suffer some losses. For example: measles, you may not die, but you may end up losing your hearing. Mumps: you may actually lose your ability to reproduce. Polio: you may be paralysed for life. And of course, you can actually die. The flu causes over 100 000 deaths world wide every year, and that doesn’t even count the millions who have died in massive flu pandemics prior to the advent of the vaccine.